Features

- 10-bit resolution
- ±1 LSB max DNL
- ±1 LSB max INL
- On-chip sample and hold
- SPI™ serial interface (modes 0, 0 and 1, 1)
- Single supply operation: 2.7V - 5.5V
- 200 ksp/s sampling rate at 5V
- 75 ksp/s sampling rate at 2.7V
- Low power CMOS technology
 - 5 nA typical standby current, 2 μA max
 - 500 μA max active current at 5V
- Industrial temp range: -40°C to +85°C
- 8-pin PDIP, SOIC, MSOP and TSSOP packages

Applications

- Sensor Interface
- Process Control
- Data Acquisition
- Battery Operated Systems

Description

The Microchip Technology Inc. MCP3001 is a successive approximation 10-bit A/D converter (ADC) with on-board sample and hold circuitry. The device provides a single pseudo-differential input. Differential Nonlinearity (DNL) and Integral Nonlinearity (INL) are both specified at ±1 LSB max. Communication with the device is done using a simple serial interface compatible with the SPI protocol. The device is capable of sample rates up to 200 ksp/s at a clock rate of 2.8 MHz. The MCP3001 operates over a broad voltage range (2.7V - 5.5V). Low current design permits operation with a typical standby current of only 5 nA and a typical active current of 400 μA. The device is offered in 8-pin PDIP, MSOP, TSSOP and 150 mil SOIC packages.

SPI™ is a trademark of Motorola Inc.
1.0 ELECTRICAL CHARACTERISTICS

1.1 Maximum Ratings*

V_{DD}...7.0V
All inputs and outputs w.r.t. V_{SS}...........-0.6V to V_{DD} +0.6V
Storage temperature-65°C to +150°C
Ambient temp. with power applied-65°C to +125°C
ESD protection on all pins (HBM)...........> 4kV

*Notice: Stresses above those listed under “Maximum ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operational listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

All parameters apply at V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 5V, T_{AMB} = -40°C to +85°C, f_{SAMPLE} = 200 ksp and f_{CLK} = 14*f_{SAMPLE}, unless otherwise noted. Typical values apply for V_{DD} = 5V, T_{AMB} =25°C, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Time</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>clock cycles</td>
<td></td>
</tr>
<tr>
<td>Analog Input Sample Time</td>
<td></td>
<td></td>
<td>1.5</td>
<td></td>
<td>clock cycles</td>
<td></td>
</tr>
<tr>
<td>Throughput Rate</td>
<td></td>
<td></td>
<td>200</td>
<td>75</td>
<td>ksp ksp</td>
<td>V_{DD} = V_{REF} = 5V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>V_{DD} = V_{REF} = 2.7V</td>
</tr>
</tbody>
</table>

DC Accuracy:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>10</td>
<td></td>
<td></td>
<td>bits</td>
<td></td>
</tr>
<tr>
<td>Integral Nonlinearity</td>
<td></td>
<td>±0.5</td>
<td>±1</td>
<td>LSB</td>
<td>No missing codes over temperature</td>
</tr>
<tr>
<td>Differential Nonlinearity</td>
<td></td>
<td></td>
<td>±1</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Offset Error</td>
<td></td>
<td>±1.5</td>
<td></td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>Gain Error</td>
<td></td>
<td></td>
<td>±1</td>
<td>LSB</td>
<td></td>
</tr>
</tbody>
</table>

Dynamic Performance:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>THD</td>
<td>-76</td>
<td></td>
<td></td>
<td>dB</td>
<td>V_{IN} = 0.1V to 4.9V@1 kHz</td>
</tr>
<tr>
<td>SINAD (SINAD)</td>
<td>61</td>
<td></td>
<td></td>
<td>dB</td>
<td>V_{IN} = 0.1V to 4.9V@1 kHz</td>
</tr>
<tr>
<td>SFDR</td>
<td>80</td>
<td></td>
<td></td>
<td>dB</td>
<td>V_{IN} = 0.1V to 4.9V@1 kHz</td>
</tr>
</tbody>
</table>

Reference Input:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>V_{REF}</th>
<th>0.25</th>
<th></th>
<th>V_{DD}</th>
<th>V</th>
<th>Note 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Drain</td>
<td>I_{REF}</td>
<td></td>
<td>90</td>
<td>150</td>
<td>µA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
<td>3</td>
<td>µA</td>
<td>CS = V_{DD} = 5V</td>
</tr>
</tbody>
</table>

Note 1: This parameter is guaranteed by characterization and not 100% tested.

Note 2: See graph that relates linearity performance to V_{REF} level.

Note 3: Because the sample cap will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
All parameters apply at $V_{DD} = 5\,V$, $V_{SS} = 0\,V$, $V_{REF} = 5\,V$, $T_{AMB} = -40^\circ\text{C}$ to $+85^\circ\text{C}$, $f_{SAMPLE} = 200\,\text{ksps}$ and $f_{CLK} = 14\times f_{SAMPLE}$, unless otherwise noted. Typical values apply for $V_{DD} = 5\,V$, $T_{AMB} = 25^\circ\text{C}$, unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Operating Temperature Range</td>
<td>T_A</td>
<td>-40</td>
<td></td>
<td>+85</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td></td>
<td>+150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Thermal Package Resistance:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td></td>
<td>85</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θ_{JA}</td>
<td></td>
<td>163</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td></td>
<td>206</td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-TSSOP</td>
<td>θ_{JA}</td>
<td></td>
<td></td>
<td></td>
<td>°C/W</td>
<td></td>
</tr>
<tr>
<td>Analog Inputs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Voltage Range (IN+)</td>
<td>IN+</td>
<td></td>
<td></td>
<td></td>
<td>$V_{REF}+IN-$</td>
<td>V</td>
</tr>
<tr>
<td>Input Voltage Range (IN-)</td>
<td>IN-</td>
<td>$V_{SS}-100$</td>
<td></td>
<td>$V_{SS}+100$</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Leakage Current</td>
<td></td>
<td></td>
<td>0.001</td>
<td>±1</td>
<td>μA</td>
<td></td>
</tr>
<tr>
<td>Switch Resistance</td>
<td>R_{SS}</td>
<td></td>
<td>1K</td>
<td></td>
<td>Ω</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>Sample Capacitor</td>
<td>C_{SAMPLE}</td>
<td></td>
<td>20</td>
<td></td>
<td>pF</td>
<td>See Figure 4-1</td>
</tr>
<tr>
<td>Digital Input/Output:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data Coding Format</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Input Voltage</td>
<td>V_{HI}</td>
<td>0.7 V_{DD}</td>
<td></td>
<td></td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Low Level Input Voltage</td>
<td>V_{IL}</td>
<td></td>
<td></td>
<td>0.3 V_{DD}</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>High Level Output Voltage</td>
<td>V_{OH}</td>
<td>4.1</td>
<td></td>
<td></td>
<td>V</td>
<td>$I_{OH} = -1,mA, V_{DD} = 4.5,V$</td>
</tr>
<tr>
<td>Low Level Output Voltage</td>
<td>V_{OL}</td>
<td></td>
<td></td>
<td>0.4</td>
<td>V</td>
<td>$I_{OL} = 1,mA, V_{DD} = 4.5,V$</td>
</tr>
<tr>
<td>Input Leakage Current</td>
<td>I_{LI}</td>
<td>-10</td>
<td></td>
<td>10</td>
<td>μA</td>
<td>$V_{IN} = V_{SS} \text{ or } V_{DD}$</td>
</tr>
<tr>
<td>Output Leakage Current</td>
<td>I_{LO}</td>
<td>-10</td>
<td></td>
<td>10</td>
<td>μA</td>
<td>$V_{OUT} = V_{SS} \text{ or } V_{DD}$</td>
</tr>
<tr>
<td>Pin Capacitance (all inputs/outputs)</td>
<td>$C_{IN, C_{OUT}}$</td>
<td></td>
<td></td>
<td>10</td>
<td>pF</td>
<td>$V_{DD} = 5.0,V \text{ (Note 1)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$T_{AMB} = 25^\circ\text{C}, f = 1,MHz$</td>
</tr>
<tr>
<td>Timing Parameters:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock Frequency</td>
<td>f_{CLK}</td>
<td></td>
<td></td>
<td>2.8</td>
<td>MHz</td>
<td>$V_{DD} = 5,V \text{ (Note 3)}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.05 MHz</td>
<td>$V_{DD} = 2.7,V \text{ (Note 3)}$</td>
</tr>
<tr>
<td>Clock High Time</td>
<td>t_{HI}</td>
<td>160</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Clock Low Time</td>
<td>t_{LO}</td>
<td>160</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CS Fall To First Rising CLK Edge</td>
<td>t_{SUCS}</td>
<td>100</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>CLK Fall To Output Data Valid</td>
<td>t_{DO}</td>
<td></td>
<td></td>
<td>125</td>
<td>ns</td>
<td>$V_{DD} = 5,V, \text{ See Figure 1-2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
<td>$V_{DD} = 2.7,V, \text{ See Figure 1-2}$</td>
</tr>
<tr>
<td>CLK Fall To Output Enable</td>
<td>t_{EN}</td>
<td></td>
<td></td>
<td>125</td>
<td>ns</td>
<td>$V_{DD} = 5,V, \text{ See Figure 1-2}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200</td>
<td>ns</td>
<td>$V_{DD} = 2.7,V, \text{ See Figure 1-2}$</td>
</tr>
<tr>
<td>CS Rise To Output Disable</td>
<td>t_{DIS}</td>
<td></td>
<td></td>
<td>100</td>
<td>ns</td>
<td>See test circuits, Figure 1-2 (Note 1)</td>
</tr>
<tr>
<td>CS Disable Time</td>
<td>t_{CSH}</td>
<td>350</td>
<td></td>
<td></td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>DOUT Rise Time</td>
<td>t_{R}</td>
<td></td>
<td></td>
<td>100</td>
<td>ns</td>
<td>See test circuits, Figure 1-2 (Note 1)</td>
</tr>
<tr>
<td>DOUT Fall Time</td>
<td>t_{F}</td>
<td></td>
<td></td>
<td>100</td>
<td>ns</td>
<td>See test circuits, Figure 1-2 (Note 1)</td>
</tr>
</tbody>
</table>

Note 1: This parameter is guaranteed by characterization and not 100% tested.
Note 2: See graph that relates linearity performance to V_{REF} level.
Note 3: Because the sample cap will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.
MCP3001

All parameters apply at \(V_{DD} = 5V, V_{SS} = 0V, V_{REF} = 5V, T_{AMB} = -40^\circ C \) to \(+85^\circ C\), \(f_{SAMPLE} = 200 \text{ kspS} \) and \(f_{CLK} = 14f_{SAMPLE} \), unless otherwise noted. Typical values apply for \(V_{DD} = 5V, T_{AMB} = 25^\circ C\), unless otherwise noted.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>(V_{DD})</td>
<td>2.7</td>
<td>----</td>
<td>5.5</td>
<td>V</td>
<td>(V_{DD} = 5.0V, D_{OUT}) unloaded</td>
</tr>
<tr>
<td>Operating Current</td>
<td>(I_{DD})</td>
<td>----</td>
<td>400</td>
<td>500</td>
<td>(\mu A)</td>
<td>(V_{DD} = 5.0V, D_{OUT}) unloaded</td>
</tr>
<tr>
<td></td>
<td>(I_{DD})</td>
<td>----</td>
<td>210</td>
<td>500</td>
<td>(\mu A)</td>
<td>(V_{DD} = 2.7V, D_{OUT}) unloaded</td>
</tr>
<tr>
<td>Standby Current</td>
<td>(I_{DDS})</td>
<td>0.005</td>
<td>2</td>
<td>(\mu A)</td>
<td>(CS = V_{DD} = 5.0V)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: This parameter is guaranteed by characterization and not 100% tested.

Note 2: See graph that relates linearity performance to \(V_{REF} \) level.

Note 3: Because the sample cap will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

Figure 1-1: Serial Timing.
FIGURE 1-2: Test Circuits.
2.0 TYPICAL PERFORMANCE CHARACTERISTICS

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $f_{SAMPLE} = 200$ ksp, $f_{CLK} = 14\times$Sample Rate, $T_A = 25^\circ C$

FIGURE 2-1: Integral Nonlinearity (INL) vs. Sample Rate.

FIGURE 2-2: Integral Nonlinearity (INL) vs. V_{REF}.

FIGURE 2-3: Integral Nonlinearity (INL) vs. Code (Representative Part).

FIGURE 2-4: Integral Nonlinearity (INL) vs. Sample Rate ($V_{DD} = 2.7V$).

FIGURE 2-5: Integral Nonlinearity (INL) vs. V_{REF} ($V_{DD} = 2.7V$).

FIGURE 2-6: Integral Nonlinearity (INL) vs. Code (Representative Part, $V_{DD} = 2.7V$).
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $f_{SAMPLE} = 200$ ksp, $f_{CLK} = 14\times$Sample Rate,$T_A = 25^\circ$C

FIGURE 2-7: Integral Nonlinearity (INL) vs. Temperature.

FIGURE 2-8: Differential Nonlinearity (DNL) vs. Sample Rate.

FIGURE 2-9: Differential Nonlinearity (DNL) vs. V_{REF}.

FIGURE 2-10: Integral Nonlinearity (INL) vs. Temperature ($V_{DD} = 2.7V$).

FIGURE 2-11: Differential Nonlinearity (DNL) vs. Sample Rate ($V_{DD} = 2.7V$).

FIGURE 2-12: Differential Nonlinearity (DNL) vs. V_{REF} ($V_{DD} = 2.7V$).
MCP3001

Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $f_{SAMPLE} = 200$ ksps, $f_{CLK} = 14$*Sample Rate*, $T_A = 25^\circ C$

FIGURE 2-13: Differential Nonlinearity (DNL) vs. Code (Representative Part).

FIGURE 2-14: Differential Nonlinearity (DNL) vs. Temperature.

FIGURE 2-15: Gain Error vs. V_{REF}.

FIGURE 2-16: Differential Nonlinearity (DNL) vs. Code (Representative Part, $V_{DD} = 2.7V$).

FIGURE 2-17: Differential Nonlinearity (DNL) vs. Temperature ($V_{DD} = 2.7V$).

FIGURE 2-18: Offset Error vs. V_{REF}.
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $f_{SAMPLE} = 200$ ksp, $f_{CLK} = 14*Sample Rate, T_A = 25^\circ C$

FIGURE 2-19: Gain Error vs. Temperature.

FIGURE 2-20: Signal to Noise Ratio (SNR) vs. Input Frequency.

FIGURE 2-21: Total Harmonic Distortion (THD) vs. Input Frequency.

FIGURE 2-22: Offset Error vs. Temperature.

FIGURE 2-23: Signal to Noise Ratio and Distortion (SINAD) vs. Input Frequency.

FIGURE 2-24: Signal to Noise and Distortion (SINAD) vs. Input Signal Level.
Note: Unless otherwise indicated, $V_{DD} = V_{REF} = 5V$, $f_{SAMPLE} = 200$ ksp, $f_{CLK} = 14\times$Sample Rate, $T_A = 25^\circ C$

FIGURE 2-25: Effective Number of Bits (ENOB) vs. V_{REF}.

FIGURE 2-26: Spurious Free Dynamic Range (SFDR) vs. Input Frequency.

FIGURE 2-27: Frequency Spectrum of 10 kHz Input (Representative Part).

FIGURE 2-28: Effective Number of Bits (ENOB) vs. Input Frequency.

FIGURE 2-29: Power Supply Rejection (PSR) vs. Ripple Frequency.

FIGURE 2-30: Frequency Spectrum of 1 kHz Input (Representative Part, $V_{DD} = 2.7V$).
Note: Unless otherwise indicated, \(V_{DD} = V_{REF} = 5V \), \(f_{SAMPLE} = 200 \text{ ksp} \), \(f_{CLK} = 14 \text{ Sample Rate}\), \(T_A = 25^\text{C} \)

FIGURE 2-31: \(I_{DD} \text{ vs. } V_{DD} \)

FIGURE 2-32: \(I_{DD} \text{ vs. Clock Frequency.} \)

FIGURE 2-33: \(I_{DD} \text{ vs. Temperature.} \)

FIGURE 2-34: \(I_{REF} \text{ vs. } V_{DD} \)

FIGURE 2-35: \(I_{REF} \text{ vs. Clock Frequency.} \)

FIGURE 2-36: \(I_{REF} \text{ vs. Temperature.} \)
MCP3001

Note: Unless otherwise indicated, \(V_{DD} = V_{REF} = 5V \), \(f_{SAMPLE} = 200 \) ksp, \(f_{CLK} = 14 \times \) Sample Rate, \(T_A = 25^\circ C \)

FIGURE 2-37: \(I_{DDS} \) vs. \(V_{DD} \).

FIGURE 2-38: \(I_{DDS} \) vs. Temperature.

FIGURE 2-39: Analog Input Leakage Current vs. Temperature.
3.0 PIN DESCRIPTIONS

3.1 IN+
Positive analog input. This input can vary from IN- to $V_{REF} + $IN-.

3.2 IN-
Negative analog input. This input can vary ±100 mV from V_{SS}.

3.3 CS/SHDN (Chip Select/Shutdown)
The CS/SHDN pin is used to initiate communication with the device when pulled low and will end a conversion and put the device in low power standby when pulled high. The CS/SHDN pin must be pulled high between conversions.

3.4 CLK (Serial Clock)
The SPI clock pin is used to initiate a conversion and to clock out each bit of the conversion as it takes place. See Section 6.2 for constraints on clock speed.

3.5 DOUT (Serial Data output)
The SPI serial data output pin is used to shift out the results of the A/D conversion. Data will always change on the falling edge of each clock as the conversion takes place.

4.0 DEVICE OPERATION
The MCP3001 A/D converter employs a conventional SAR architecture. With this architecture, a sample is acquired on an internal sample/hold capacitor for 1.5 clock cycles starting on the first rising edge of the serial clock after CS has been pulled low. Following this sample time, the input switch of the converter opens and the device uses the collected charge on the internal sample and hold capacitor to produce a serial 10-bit digital output code. Conversion rates of 200 kspS are possible on the MCP3001. See Section 6.2 for information on minimum clock rates. Communication with the device is done using a 3-wire SPI-compatible interface.

4.1 Analog Inputs
The MCP3001 provides a single pseudo-differential input. The IN+ input can range from IN- to ($V_{REF} + $IN-). The IN- input is limited to ±100 mV from the V_{SS} rail. The IN- input can be used to cancel small signal common-mode noise which is present on both the IN+ and IN- inputs.

For the A/D Converter to meet specification, the charge holding capacitor, C_{SAMPLE} must be given enough time to acquire a 10-bit accurate voltage level during the 1.5 clock cycle sampling period. The analog input model is shown in Figure 4-1.

In this diagram, it is shown that the source impedance (R_S) adds to the internal sampling switch, (R_{SS}) impedance, directly affecting the time that is required to charge the capacitor, C_{SAMPLE}. Consequently, a larger source impedance increases the offset, gain, and integral linearity errors of the conversion.

Ideally, the impedance of the signal source should be near zero. This is achievable with an operational amplifier such as the MCP601, which has a closed loop output impedance of tens of ohms. The adverse affects of higher source impedances are shown in Figure 4-2.

If the voltage level of $V_{IN}+$ is equal to or less than $V_{IN}-$, the resultant code will be 000h. If the voltage at $V_{IN}+$ is equal to or greater than ($V_{REF} + (IN-) - 1$ LSB), then the output code will be 3FFh. If the voltage level at V_{IN} is more than 1 LSB below V_{SS}, then the voltage level at the $IN+$ input will have to go below V_{SS} to see the 000h output code. Conversely, if $IN-$ is more than 1 LSB above V_{SS}, the 3FFh code will not be seen unless the $IN+$ input level goes above V_{REF} level.

4.2 Reference Input
The reference input (V_{REF}) determines the analog input voltage range and the LSB size, as shown below.

$$\text{LSB Size} = \frac{V_{REF}}{1024}$$

As the reference input is reduced, the LSB size is reduced accordingly. The theoretical digital output code produced by the A/D Converter is a function of the analog input signal and the reference input as shown below.

$$\text{Digital Output Code} = \frac{1024 \times V_{IN}}{V_{REF}}$$

where:

$$V_{IN} = \text{analog input voltage} = V(IN+) - V(IN-)$$

$$V_{REF} = \text{reference voltage}$$

When using an external voltage reference device, the system designer should always refer to the manufacturer’s recommendations for circuit layout. Any instability in the operation of the reference device will have a direct effect on the operation of the ADC.
FIGURE 4-1: Analog Input Model.

FIGURE 4-2: Maximum Clock Frequency vs. Input Resistance (R_S) to maintain less than a 0.1LSB deviation in INL from nominal conditions.
5.0 SERIAL COMMUNICATIONS

Communication with the device is done using a standard SPI compatible serial interface. Initiating communication with the MCP3001 begins with the CS going low. If the device was powered up with the CS pin low, it must be brought high and back low to initiate communication. The device will begin to sample the analog input on the first rising edge after CS goes low. The sample period will end in the falling edge of the second clock, at which time the device will output a low null bit. The next 10 clocks will output the result of the conversion with MSB first, as shown in Figure 5-1. Data is always output from the device on the falling edge of the clock. If all 10 data bits have been transmitted and the device continues to receive clocks while the CS is held low, the device will output the conversion result LSB first, as shown in Figure 5-2. If more clocks are provided to the device while CS is still low (after the LSB first data has been transmitted), the device will clock out zeros indefinitely.

If it is desired, the CS can be raised to end the conversion period at any time during the transmission. Faster conversion rates can be obtained by using this technique if not all the bits are captured before starting a new cycle. Some system designers use this method by capturing only the highest order 8 bits and ‘throwing away’ the lower 2 bits.

* After completing the data transfer, if further clocks are applied with CS low, the ADC will output LSB first data, followed by zeros indefinitely. See Figure below.

** tDATA: during this time, the bias current and the comparator powering down and the reference input becomes a high impedance node.

** tDATA:** during this time, the bias current and the comparator powers down and the reference input becomes a high impedance node leaving the CLK running to clock out the LSB-first data or zeros.

FIGURE 5-1: Communication with MCP3001 (MSB first Format).

FIGURE 5-2: Communication with MCP3001 (LSB first Format).

6.0 APPLICATIONS INFORMATION
6.1 **Using the MCP3001 with Microcontroller SPI Ports**

With most microcontroller SPI ports, it is required to clock out eight bits at a time. If this is the case, it will be necessary to provide more clocks than are required for the MCP3001. As an example, Figure 6-1 and Figure 6-2 show how the MCP3001 can be interfaced to a microcontroller with a standard SPI port. Since the MCP3001 always clocks data out on the falling edge of clock, the MCU SPI port must be configured to match this operation. SPI Mode 0,0 (clock idles low) and SPI Mode 1,1 (clock idles high) are both compatible with the MCP3001. Figure 6-1 depicts the operation shown in SPI Mode 0,0, which requires that the CLK from the microcontroller idles in the 'low' state. As shown in the diagram, the MSB is clocked out of the ADC on the falling edge of the third clock pulse. After the first eight clocks have been sent to the device, the microcontroller's receive buffer will contain two unknown bits (the output is at high impedance for the first two clocks), the null bit and the highest order five bits of the conversion. After the second eight clocks have been sent to the device, the MCU receive register will contain the lowest order five bits and the B1-B4 bits repeated as the ADC has begun to shift out LSB first data with the extra clocks. Typical procedure would then call for the lower order byte of data to be shifted right by three bits to remove the extra B1-B4 bits. The B9-B5 bits are then rotated 3 bits to the right with B7-B5 rotating from the high order byte to the lower order byte. Easier manipulation of the converted data can be obtained by using this method.

Figure 6-2 shows SPI Mode 1,1 communication which requires that the clock idles in the high state. As with mode 0,0, the ADC outputs data on the falling edge of the clock and the MCU latches data from the ADC in on the rising edge of the clock.

FIGURE 6-1: SPI Communication with the MCP3001 using 8-bit segments (Mode 0,0: SCLK idles low).

FIGURE 6-2: SPI Communication with the MCP3001 using 8-bit segments (Mode 1,1: SCLK idles high).
6.2 Maintaining Minimum Clock Speed

When the MCP3001 initiates the sample period, charge is stored on the sample capacitor. When the sample period is complete, the device converts one bit for each clock that is received. It is important for the user to note that a slow clock rate will allow charge to bleed off the sample cap while the conversion is taking place. At 85°C (worst case condition), the part will maintain proper charge on the sample cap for 700 μs at V_DD = 2.7V and 1.5 ms at V_DD = 5V. This means that at V_DD = 2.7V, the time it takes to transmit the first 14 clocks must not exceed 700 μs. Failure to meet this criterion may induce linearity errors into the conversion outside the rated specifications.

6.3 Buffering/Filtering the Analog Inputs

If the signal source for the ADC is not a low impedance source, it will have to be buffered or inaccurate conversion results may occur. See Figure 4-2. It is also recommended that a filter be used to eliminate any signals that may be aliased back into the conversion results. This is illustrated in Figure 6-3 where an op amp is used to drive, filter, and gain the analog input of the MCP3001. This amplifier provides a low impedance source for the converter input and a low pass filter, which eliminates unwanted high frequency noise.

Low pass (anti-aliasing) filters can be designed using Microchip's interactive FilterLab™ software. FilterLab will calculate capacitor and resistor values, as well as determine the number of poles that are required for the application. For more information on filtering signals, see the application note AN699 “Anti-Aliasing Analog Filters for Data Acquisition Systems.”

6.4 Layout Considerations

When laying out a printed circuit board for use with analog components, care should be taken to reduce noise wherever possible. A bypass capacitor should always be used with this device and should be placed as close as possible to the device pin. A bypass capacitor value of 1 μF is recommended.

Digital and analog traces should be separated as much as possible on the board and no traces should run underneath the device or the bypass capacitor. Extra precautions should be taken to keep traces with high frequency signals (such as clock lines) as far as possible from analog traces.

Use of an analog ground plane is recommended in order to keep the ground potential the same for all devices on the board. Providing VDD connections to devices in a “star” configuration can also reduce noise by eliminating current return paths and associated errors. See Figure 6-4. For more information on layout tips when using ADC, refer to AN-688 “Layout Tips for 12-Bit A/D Converter Applications”.

![Figure 6-3: The MCP601 operational amplifier is used to implement a 2nd order anti-aliasing filter for the signal being converted by the MCP3001.](image)

![Figure 6-4: VDD traces arranged in a 'Star' configuration in order to reduce errors caused by current return paths.](image)
7.0 PACKAGING INFORMATION

7.1 Package Marking Information

ILLUSTRATIONS NOT TO SCALE

Legend:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Customer specific information*</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week '01')</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
</tbody>
</table>

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

* Standard device marking consists of Microchip part number, year code, week code, and traceability code.
8-Lead Plastic Dual In-line (P) – 300 mil (PDIP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.100</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
<td>.140</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.115</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
<td>.015</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
<td>.300</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.240</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.360</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
<td>.125</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>B1</td>
<td>.045</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>B</td>
<td>.014</td>
</tr>
<tr>
<td>Overall Row Spacing</td>
<td>eB</td>
<td>.310</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

*Controlling Parameter

§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (0.254mm) per side.
JEDEC Equivalent: MS-001
Drawing No. C04-018
MCP3001

8-Lead Plastic Small Outline (SN) – Narrow, 150 mil (SOIC)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES*</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.050</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.063</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.052</td>
</tr>
<tr>
<td>Standoff §</td>
<td>A1</td>
<td>.004</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.228</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.146</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.189</td>
</tr>
<tr>
<td>Chamfer Distance</td>
<td>h</td>
<td>.010</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.019</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>f</td>
<td>0</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.008</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.013</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>0</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>0</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” (.254mm) per side.
JEDEC Equivalent: MS-012
Drawing No. C04-097
8-Lead Plastic Micro Small Outline Package (MSOP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>p</td>
<td>.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.044</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.030</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.002</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.184</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.114</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>.114</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.016</td>
</tr>
<tr>
<td>Footprint (Reference)</td>
<td>F</td>
<td>.035</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
<td>.6</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.010</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>7</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>7</td>
</tr>
</tbody>
</table>

*Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

Drawing No. C04-111
8-Lead Plastic Thin Shrink Small Outline (ST) – 4.4 mm (TSSOP)

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
<th>MILLIMETERS*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>NOM</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>n</td>
<td>8</td>
</tr>
<tr>
<td>Pitch</td>
<td>P</td>
<td>.026</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>.043</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>.033</td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>.002</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>.256</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>.173</td>
</tr>
<tr>
<td>Molded Package Length</td>
<td>D</td>
<td>.142</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>.024</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>f</td>
<td>4</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>.004</td>
</tr>
<tr>
<td>Lead Width</td>
<td>B</td>
<td>.007</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
<td>5</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
<td>5</td>
</tr>
</tbody>
</table>

* Controlling Parameter
§ Significant Characteristic

Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side.
JEDEC Equivalent: MO-153
Drawing No. C04-086
ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web (WWW) site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- Listing of seminars and events

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and
1-480-792-7302 for the rest of the world.

013001
READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To: Technical Publications Manager Total Pages Sent
RE: Reader Response

From: Name ________________________________

Company __________________________________
Address ____________________________________
City / State / ZIP / Country ________________________________

Telephone: (______) ________ - ________ FAX: (______) ________ - ________

Application (optional):

Would you like a reply? ___Y___ N

Device: MCP3001 Literature Number: DS21293B

Questions:

1. What are the best features of this document?

2. How does this document meet your hardware and software development needs?

3. Do you find the organization of this data sheet easy to follow? If not, why?

4. What additions to the data sheet do you think would enhance the structure and subject?

5. What deletions from the data sheet could be made without affecting the overall usefulness?

6. Is there any incorrect or misleading information (what and where)?

7. How would you improve this document?

8. How would you improve our software, systems, and silicon products?

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device:
MCP3001: 10-Bit Serial A/D Converter
MCP3001T: 10-Bit Serial A/D Converter (Tape and Reel) (SOIC and TSSOP only)

Temperature Range: I = -40°C to +85°C

Package:
P = Plastic DIP (300 mil Body), 8-lead
SN = Plastic SOIC (150 mil Body), 8-lead
MS = Plastic Micro Small Outline (MSOP), 8-lead
ST = Plastic TSSOP (4.4 mm), 8-lead

Examples:

a) MCP3001-I/P: Industrial Temperature, PDIP package.
b) MCP3001-I/SN: Industrial Temperature, SOIC package.
c) MCP3001-I/ST: Industrial Temperature, TSSOP package.
d) MCP3001-I/MS: Industrial Temperature, MSOP package.

Sales and Support

Data Sheets
Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

New Customer Notification System
Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip’s products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, PIC, PICmicro, PICMASTER, PICSTART, PRO MATE, KEELog, SEEVAL, MPLAB and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

Total Endurance, ICSP, In-Circuit Serial Programming, FilterLab, MXDEV, microD, FlexROM, fuzzyLAB, MPASM, MPLINK, MPLIB, PICC, PICDEM, PICDEM.net, ICEPIC, Migratable Memory, FanSense, ECONOMONITOR, Select Mode and microPort are trademarks of Microchip Technology Incorporated in the U.S.A.

Serialized Quick Term Programming (SQTP) is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2001, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

Microchip received QS-9000 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona in July 1999. The Company’s quality system processes and procedures are QS-9000 compliant for its PICmicro® 8-bit MCUs, KEELog® code hopping devices, Serial EEPROMs and microperipheral products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001 certified.
WORLDWIDE SALES AND SERVICE

AMERICAS
Corporate Office
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2335 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0307 Fax: 770-640-0307

Austin - Analog
13740 North Highway 183
Building J, Suite 4
Austin, TX 78750
Tel: 512-257-3370 Fax: 512-257-8526

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Boston - Analog
Unit A-8-1 Millbrook Tarry Condominium
97 Lowell Road
Concord, MA 01742
Tel: 978-371-6400 Fax: 978-371-0050

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Dayton
Two Prestige Place, Suite 130
Miamisburg, OH 45342
Tel: 937-291-1654 Fax: 937-291-9175

Detroit
Tri-Arta Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northpark Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6500

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou
Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office
Rm. 531, North Building
Fujian Foreign Trade Center Hotel
73 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7557563 Fax: 86-591-7557572

China - Shanghai
Microchip Technology Consulting (Shanghai) Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086

Hong Kong
Microchip Technology Hong Kong Ltd.
Unit 901-6, Tower 2, Metropia
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

India
Microchip Technology Inc.
India Liaison Office
Divyaasre Chambers
1 Floor, Wing A (A3/A4)
No. 11, C, Chembur Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850

Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Denmark ApS
Regus Business Centre
Lautrup høj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Arizona Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Bâtiment A - l’er Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Arizona Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44

Germany - Analog
Lochhammer Strasse 13
D-82152 Martinsried, Germany
Tel: 49-89-895650-0 Fax: 49-89-895650-22

Italy
Arizona Microchip Technology SRL Centro Direzionale Colonne
Palazzo Taurus I V. Le Colonne 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG4 1ST
Tel: 44 114 921 5869 Fax: 44-114 921-5820

08/01/01
This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.